Z SCORE TABLE
  • Z Table
    • Z Scores to Percentiles Chart
    • Z Score Calculator
    • Z Score Probability Calculator
    • Interactive Z Table
    • Z Score Formula
    • How to calculate the z score
    • How To Use Z-Score Table
    • Calculate Z-score
    • Probability in Statistics
    • Parameters in Statistics
    • Percentile Rank
    • Z Score Chart Basics
    • History of Normal Distirbution
    • Statistics Z Score Jokes
    • When to Use Z Test vs T Test
    • Z Score Practice Problems
    • Z Score Problems
    • Normal Distribution Problems
    • Confidence Interval Calculator >
      • Confidence Interval in Excel
      • 90 confidence interval z score
      • 95 Confidence Interval Z Score
      • 99 Confidence Interval Z Score
    • Z Score Confidence Interval
  • Statistics
    • Statistics Symbols
    • Statistics Formulas >
      • Binomial Coefficient
      • Empirical Rule
      • Correlation Coefficient
    • P Value Calculator >
      • P Value Calculator from Z Score
      • P Value Calculator from T Score
      • P Value Calculator from Chi-Square
      • P Value Calculator from F Ratio (ANOVA)
      • P Value Calculator from Pearson R
      • P Value Calculator Tukey's Q Score
    • Cumulative Binomial Probability Calculator
    • Normal CDF Calculator >
      • Normal CDF Formula
      • Non-normal Distribution
      • How to find normal cdf ti 84
      • Examples of Standard Deviation
      • Sample Standard Deviation on Calculator
      • Standard Deviation vs Variance
      • Population vs. Sample
      • Quantitative vs. Qualitative Data
      • Formula of Standard Deviation for Grouped Data
      • Null Hypothesis vs. Alternative Hypothesis
      • Discrete vs. Continuous Data
      • Mean vs. Median vs. Mode
      • Bayesian vs. Frequentist Statistics
      • What is High Standard Deviation
      • What Does a Standard Deviation of 0 Mean
      • Observational Study vs. Experimental Study
      • Parametric vs. Non-parametric tests
      • What is 1 Standard Deviation Above the Mean
      • How to find correlation coefficient on ti 84
      • How to find linear regression on ti-84
      • How to find solving equations on ti-84
      • How to find quadratic regression on ti-84
      • How to find factorial on ti-84
      • How to find integrals on ti-84
      • How to find confidence intervals on ti-84
      • How to find z-score on ti-84
      • How to find derivatives on ti-84
      • How to find summation on ti-84
      • How to find anova on ti-84
      • How to find graphing functions on ti-84
      • How to find factorial on ti-89
      • How to find integrals on ti-89
      • How to find standard deviation on ti-89
      • How to find derivatives on ti-89
      • How to find linear regression on ti-89
      • How to find matrix operations on ti-89
      • How to find summation on ti-89
      • How to find variance on ti-89
      • How to find Correlation on TI-Nspire
      • How to find Variance on TI-Nspire
      • How to find Standard Deviation on TI-Nspire
      • What Does a Standard Deviation of 2 Mean
      • How to find Linear Regression on TI-Nspire
      • How to find Quadratic Regression on TI-Nspire
      • How to find Matrix Operations on TI-Nspire
      • How to find Solving Equations on TI-Nspire
      • How to find Graphing Functions on TI-Nspire
      • How to find Integrals on TI-Nspire
      • How to find Derivatives on TI-Nspire
      • How to find Summation on TI-Nspire
      • How to find Factorial on TI-Nspire
      • How to find Combinations and Permutations on TI-Nspire
      • How to find Z-Score on TI-Nspire
      • How to find Probability Distributions on TI-Nspire
      • How to find ANOVA on TI-Nspire
      • How to find Histograms on TI-Nspire
      • How to find Box-and-Whisker Plots on TI-Nspire
      • How to find Present and Future Value on TI-Nspire
      • How to find Confidence Intervals on TI-Nspire
      • Population Standard Deviation and Sample Standard Deviation
    • Correlation Calculator >
      • Covariance vs. Correlation
    • Dice Roller
    • Probability Distribution Calculator
    • Interquartile Range Calculator
    • Empirical Rule Calculator
    • Mean, Median and Mode Calculator
    • Average Calculator
    • Linear Regression Calculator
    • Sample Size Calculator
    • Other Statistical Tables >
      • T Value Table
      • Chi-Square Table
      • F Distribution Table
    • Standard Deviation Calculator
    • Standard Deviation Problems
    • Normal vs Non-Normal Distribution: Understanding the Differences
    • Covariance vs. Variance: Understanding the Differences
    • Explanatory Variable: Understanding Its Role in Statistical Analysis
    • Independent variable vs dependent
    • What is a Residual in Statistics?
    • Left Skewed vs. Right Skewed Distributions
    • How to Find Variance on ti 84
    • Real Life Examples of Correlation
    • What is Regression Analysis?
    • Statistics Forum
  • Math
    • Combination Calculator
    • How to Calculate a Combination
    • Combination Formula in Statistics
    • Permutation Calculator
    • Distance Between Two Points Calculator
    • Exploring 7 Unsolvable Math Problems >
      • Riemann Hypothesis
    • Math Problems >
      • Math Problems for 1st Graders
      • Math Problems for 2nd Graders
      • Math Problems for 3rd Graders
      • Math Problems for 4th Graders
      • Math Problems for 5th Graders
      • Math Problems for 6th Graders
      • Math Problems for 7th Graders
      • Math Problems for 8th Graders
      • Math Problems for 9th Graders
      • Math Problems for 10th Graders
      • Math Problems for 11th Graders
    • Times Tables >
      • 1 Times Table
      • 2 Times Table
      • 3 Times Table
      • 4 Times Table
      • 5 Times Table
      • 6 Times Table
      • 7 Times Table
      • 8 Times Table
      • 9 Times Table
      • 10 Times Table
    • Multiplication Tables >
      • Multiplication Table by 20
      • Multiplication Table by 19
      • Multiplication Table by 18
      • Multiplication Table by 17
      • Multiplication Table by 16
      • Multiplication Table by 15
      • Multiplication Table by 14
      • Multiplication Table by 13
      • Multiplication Table by 12
      • Multiplication Table by 11
      • Multiplication Table by 10
      • Multiplication Table by 9
      • Multiplication Table by 8
      • Multiplication Table by 7
      • Multiplication Table by 6
      • Multiplication Table by 5
      • Multiplication Table by 4
      • Multiplication Table by 3
    • Roman Numerals Chart
    • Roman Numerals >
      • Roman Numerals Converter
      • I Roman Numerals
      • II Roman Numerals
      • III Roman Numerals
      • IV Roman Numerals
      • V Roman Numerals
      • VI Roman Numerals
      • VII Roman Numerals
      • VIII Roman Numerals
      • IX Roman Numerals
      • X Roman Numerals
      • XI Roman Numerals
      • XII Roman Numerals
      • XIII Roman Numerals
      • XIV Roman Numerals
      • XV Roman Numerals
      • XVI Roman Numerals
      • XVII Roman Numerals
      • XVIII Roman Numerals
      • LXVI Roman Numerals
      • LXVII Roman Numerals
      • LXVIII Roman Numerals
      • LXIX Roman Numerals
      • LXX Roman Numerals
      • LXXI Roman Numerals
      • LXXII Roman Numerals
      • LXXIII Roman Numerals
      • LXXIV Roman Numerals
      • LXXV Roman Numerals
      • LXXVI Roman Numerals
      • LXXVII Roman Numerals
      • LXXVIII Roman Numerals
      • LXXIX Roman Numerals
      • LXXX Roman Numerals
      • LXXXI Roman Numerals
      • LXXXII Roman Numerals
      • LXXXIII Roman Numerals
      • LXXXIV Roman Numerals
      • LXXXV Roman Numerals
      • LXXXVI Roman Numerals
      • LXXXVII Roman Numerals
      • LXXXVIII Roman Numerals
      • LXXXIX Roman Numerals
      • XC Roman Numerals
      • XCI Roman Numerals
      • XCII Roman Numerals
      • XCIII Roman Numerals
      • XCIV Roman Numerals
      • XCV Roman Numerals
      • XCVI Roman Numerals
      • XCVII Roman Numerals
      • XCVIII Roman Numerals
      • XCIX Roman Numerals
      • C Roman Numerals
      • CI Roman Numerals
      • CII Roman Numerals
      • CIII Roman Numerals
      • CIV Roman Numerals
      • CV Roman Numerals
      • CVI Roman Numerals
      • CVII Roman Numerals
      • CVIII Roman Numerals
      • CIX Roman Numerals
      • CX Roman Numerals
      • CXI Roman Numerals
      • CXII Roman Numerals
      • CXIII Roman Numerals
      • CXIV Roman Numerals
      • CXV Roman Numerals
      • CXVI Roman Numerals
      • CXVII Roman Numerals
      • CXVIII Roman Numerals
      • CXIX Roman Numerals
      • CXX Roman Numerals
      • CXXI Roman Numerals
      • CXXII Roman Numerals
      • CXXIII Roman Numerals
      • CXXIV Roman Numerals
      • CXXV Roman Numerals
      • CXXVI Roman Numerals
      • CXXVII Roman Numerals
      • CXXVIII Roman Numerals
      • CXXIX Roman Numerals
      • CXXX Roman Numerals
      • CXXXI Roman Numerals
      • CXXXII Roman Numerals
      • CXXXIII Roman Numerals
      • CXXXIV Roman Numerals
      • CXXXV Roman Numerals
      • CXXXVI Roman Numerals
      • CXXXVII Roman Numerals
      • CXXXVIII Roman Numerals
      • CXXXIX Roman Numerals
      • CXL Roman Numerals
      • CXLI Roman Numerals
      • CXLII Roman Numerals
      • CXLIII Roman Numerals
      • CXLIV Roman Numerals
      • CXLV Roman Numerals
      • CXLVI Roman Numerals
      • CXLVII Roman Numerals
      • CXLVIII Roman Numerals
      • CXLIX Roman Numerals
      • CL Roman Numerals
      • CLI Roman Numerals
      • CLII Roman Numerals
      • CLIII Roman Numerals
      • CLIV Roman Numerals
      • CLV Roman Numerals
      • CLVI Roman Numerals
      • CLVII Roman Numerals
      • CLVIII Roman Numerals
      • CLIX Roman Numerals
      • CLX Roman Numerals
      • CLXI Roman Numerals
      • CLXII Roman Numerals
      • CLXIII Roman Numerals
      • CLXIV Roman Numerals
      • CLXV Roman Numerals
      • CLXVI Roman Numerals
      • CLXVII Roman Numerals
      • CLXVIII Roman Numerals
      • CLXIX Roman Numerals
      • CLXX Roman Numerals
      • CLXXI Roman Numerals
      • CLXXII Roman Numerals
      • CLXXIII Roman Numerals
      • CLXXIV Roman Numerals
      • CLXXV Roman Numerals
      • CLXXVI Roman Numerals
      • CLXXVII Roman Numerals
      • CLXXVIII Roman Numerals
      • CLXXIX Roman Numerals
      • CLXXX Roman Numerals
      • CLXXXI Roman Numerals
      • CLXXXII Roman Numerals
      • CLXXXIII Roman Numerals
      • CLXXXIV Roman Numerals
      • CLXXXV Roman Numerals
      • CLXXXVI Roman Numerals
      • CLXXXVII Roman Numerals
      • CLXXXVIII Roman Numerals
      • CLXXXIX Roman Numerals
      • CXC Roman Numerals
      • CXCI Roman Numerals
      • CXCII Roman Numerals
      • CXCIII Roman Numerals
      • CXCIV Roman Numerals
      • CXCV Roman Numerals
      • CXCVI Roman Numerals
      • CXCVII Roman Numerals
      • CXCVIII Roman Numerals
      • CXCIX in Roman Numerals
      • CC Roman Numerals
      • 3 in Roman Numerals
      • 4 in Roman Numerals
      • 5 in Roman Numerals
      • 6 in Roman Numerals
      • 7 in Roman Numerals
      • 8 in Roman Numerals
      • 9 in Roman Numerals
      • 10 in Roman Numerals
      • 11 in Roman Numerals
      • 12 in Roman Numerals
      • 13 in Roman Numerals
      • 14 in Roman Numerals
      • 15 in Roman Numerals
      • 16 in Roman Numerals
      • 18 in Roman Numerals
      • 19 in Roman Numerals
      • 20 in Roman Numerals
      • 22 in Roman Numerals
      • 30 in Roman Numerals
      • 50 in Roman Numerals
      • 100 in Roman Numerals
      • 500 in Roman Numerals
      • 1000 in Roman Numerals
      • SAMPLE >
        • TEMP XVII Roman Numerals
    • Percentage Increase Calculator
    • Linear Equations >
      • Two-Variable Linear Equations Test with Answers
      • One Variable Linear Equations >
        • Ax=B Linear Equation Calculator
        • Ax=B Linear Equation Practice Test
    • Decimal Places Value Chart
    • Cone Volume Calculator
    • Circumference Calculator
    • Rounding Calculator >
      • Round 15 to the nearest ten
      • Round 75 to the nearest ten
      • Round 35 to the nearest ten
      • Round 5 to the nearest ten
      • Round 3 to the Nearest Ten
    • Factor Calculator >
      • Factor of 36
      • Factor of 30
      • Factor of 32
      • Factor of 35
      • Factor of 39
      • Factor of 33
      • Factor of 34
      • Factor of 3
      • Factor of 3/4
      • Factor of 38
    • Radius of a Circle
    • Fraction Calculator
    • Perfect Square Calculator >
      • Is 1 a perfect square
      • Is 2 a perfect square
      • Is 8 a perfect square
      • Is 9 a perfect square
      • Is 16 a perfect square
      • Is 20 a perfect square
      • Is 36 a perfect square
      • Is 49 a perfect square
      • Is 81 a perfect square
      • Is 125 a perfect square
    • Random Number Generator >
      • Random and Pseudorandom Numbers
      • What is Random Number
    • Horizontal Line
    • X and Y Axis
    • Margin Calculator
    • Simple Interest Calculator
    • Sig Fig Calculator
    • Right Triangle Calculator
    • Money Counter
    • Root Calculator
    • Table of Square Roots
    • Square Root Calculator >
      • Square root of 2
      • Square root of 8
      • Square root of 5
      • Square root of 4
      • Square root of 3
      • Square root of 64
      • Square root of 10
      • Square root of 16
      • Square root of 25
      • Square root of 12
      • Square root of 50
      • Square root of 20
      • Square root of 9
      • Square root of 100
      • Square root of 36
      • Square root of 6
      • Square root of 49
      • Square root of 1
      • Square root of 32
      • Square root of 40
      • Square root of 81
      • Square root of 18
      • Square root of 72
      • Square root of 13
      • Square root of 80
      • Square root of 45
    • Log Calculator
    • Inequality Symbols
    • Exponent calculator
    • Decimal to Fraction Calculator
    • Fraction to Percent Calculator
    • Scale Factor
  • Unit Conversion
    • Celsius to Fahrenheit Converter >
      • -40 C to F
      • 10 C to F
      • 15 C to F
      • 22 C to F
      • 30 C to F
      • 37 C to F
      • 40 C to F
    • Fahrenheit to Celsius Converter >
      • -40 F to C
      • 17 Fahrenheit to Celsius
      • 18 Fahrenheit to Celsius
      • 19 Fahrenheit to Celsius
      • 20 Fahrenheit to Celsius
      • 23 Fahrenheit to Celsius
      • 26 Fahrenheit to Celsius
      • 27 Fahrenheit to Celsius
      • 28 Fahrenheit to Celsius
      • 37 Fahrenheit to Celsius
      • 40 F to C
      • 60 F to C
      • 68 F to C
      • 69 F to C
      • 70 F to C
      • 72 F to C
      • 75 F to C
      • 80 F to C
      • 90 F to C
      • 100 F to C
      • 180 F to C
      • 220 F to C
      • 350 F to C
    • Weight conversion table kg to lbs
    • Kilograms to Pounds Converter >
      • 1 kg to lbs
      • 2 kg to lbs
      • 3 kg to lbs
      • 4 kg to lbs
      • 6 kg to lbs
      • 8 kg to lbs
      • 10 kg to lbs
      • 12 kg to lbs
      • 15 kg to lbs
      • 16 kg to lbs
      • 20 kg to lbs
      • 23 kg to lbs
      • 25 kg to lbs
      • 30 kg to lbs
      • 40 kg to lbs
      • 45 kg to lbs
      • 50 kg to lbs
      • 53 kg to lbs
      • 56 kg to lbs
      • 57 kg to lbs
      • 58 kg to lbs
      • 59 kg to lbs
      • 60 kg to lb
      • 62 kg to lbs
      • 63 kg to lbs
      • 64 kg to lbs
      • 65 kg to lbs
      • 67 kg to lbs
      • 68 kg to lbs
      • 70 kg to lbs
      • 72 kg to lbs
      • 73 kg to lbs
      • 74 kg to lbs
      • 75 kg to lbs
      • 76 kg to lbs
      • 78 kg to lbs
      • 80 kg to lbs
      • 82 kg to lbs
      • 84 kg to lbs
      • 85 kg to lbs
      • 90 kg to lbs
      • 95 kg to lbs
      • 150 kg to lbs
      • 100 kg to lbs
    • Pounds to Kilograms Converter >
      • 1-10 LB to KG >
        • 1.25 lb to kg
        • 2.25 lb to kg
        • 3.75 lb to kg
        • 1.75 lb to kg
        • 1.56 lb to kg
        • 5.25 lb to kg
        • 2.75 lb to kg
        • 1.87 lb to kg
        • 1.65 lb to kg
        • 2.87 lb to kg
        • 0.75 lb to kg
        • 0.75 lb to kg
        • 1.1 lb to kg
        • 1.21 lb to kg
        • 1.32 lb to kg
        • 3.25 lb to kg
        • 1.55 lb to kg
        • 2.65 lb to kg
        • 1.37 lb to kg
        • 0.55 lb to kg
        • 1.85 lb to kg
        • 2.15 lb to kg
        • 1.14 lb to kg
        • 3.31 lb to kg
        • 0.88 lb to kg
        • 1.15 lb to kg
        • 5.29 lb to kg
        • 0.45 lb to kg
        • 4.75 lb to kg
        • 0.85 lb to kg
        • 0.95 lb to kg
        • 5.11 lb to kg
        • 0.44 lb to kg
        • 1.82 lb to kg
        • 2.85 lb to kg
        • 0.68 lb to kg
        • 1.13 lb to kg
        • 0.05 lb to kg
        • 2.47 lb to kg
        • 3.85 lb to kg
        • 4.23 lb to kg
        • 1.38 lb to kg
        • 2.91 lb to kg
        • 4.12 lb to kg
        • 2.95 lb to kg
        • 5.73 lb to kg
        • 2.99 lb to kg
        • 1.78 lb to kg
        • 3.35 lb to kg
        • 1.92 lb to kg
        • 1.58 lb to kg
        • 5.51 lb to kg
        • 1.28 lb to kg
        • 0.02 lb to kg
        • 1.42 lb to kg
        • 0.89 lb to kg
        • 1.16 lb to kg
        • 1.99 lb to kg
        • 1.69 lb to kg
        • 2.17 lb to kg
        • 1 lb to kg
        • 1.6 lb to kg
        • 2 lb to kg
        • 3 lb to kg
        • 4 lb to kg
        • 5 lb to kg
        • 6 lb to kg
        • 7 lb to kg
        • 8 lb to kg
        • 9 lb to kg
        • 10 lb to kg
      • 11 lb to kg
      • 12 lb to kg
      • 12.5 lb to kg
      • 13 lb to kg
      • 14 lb to kg
      • 15 lb to kg
      • 16 lb to kg
      • 17 lb to kg
      • 18 lb to kg
      • 19 lb to kg
      • 20 lb to kg
      • 21 lb to kg
      • 22 lb to kg
      • 23 lb to kg
      • 24 lb to kg
      • 25 lb to kg
      • 26 lb to kg
      • 27 lb to kg
      • 28 lb to kg
      • 29 lb to kg
      • 30 lb to kg
      • 31 lb to kg
      • 32 lb to kg
      • 33 lb to kg
      • 35 lb to kg
      • 40 lb to kg
      • 45 lb to kg
      • 50 lb to kg
      • 55 lb to kg
      • 60 lb to kg
      • 70 lb to kg
      • 90 lb to kg
      • 98 lb to kg
      • 99 lb to kg
      • 100 lb to kg
      • 130 lb to kg
      • 150 lb to kg
    • Fluid Ounces to Milliliters
    • Kilometers to Miles Converter >
      • 1 kilometer to miles
      • 5 km to miles
      • 10 km to miles
      • 15 km to miles
      • 20 km to miles
      • 50 km to miles
      • 100 km to miles
    • Miles to Kilometers Conversion >
      • 1 mile to kilometers
      • 5 miles to km
      • 10 miles to km
      • 15 miles to km
      • 20 miles to km
    • KPH to MPH Converter >
      • 30 kph to mph
      • 45 kph to mph
      • 60 kph to mph
      • 70 kph to mph
      • 75 kph to mph
      • 90 kph to mph
      • 100 kph to mph
      • 110 kph to mph
      • 120 kph to mph
      • 130 kph to mph
      • 140 kph to mph
      • 150 kph to mph
      • 155 kph to mph
      • 160 kph to mph
      • 165 kph to mph
      • 180 kph to mph
      • 200 kph to mph
      • 210 kph to mph
      • 220 kph to mph
      • 240 kph to mph
      • 250 kph to mph
      • 260 kph to mph
      • 270 kph to mph
      • 280 kph to mph
      • 300 kph to mph
      • 320 kph to mph
      • 360 kph to mph
      • 400 kph to mph
      • 600 kph to mph
      • 800 kph to mph
    • Inches to Millimeters Converter >
      • 1 inch to mm
      • 1.5 inches to mm
      • 2 inches to mm
      • 2.5 inches to mm
      • 3 inches to mm
      • 4 inches to mm
      • 5 inches to mm
      • 6 inches to mm
      • 18 inches to mm
      • 34 inches to mm
      • 160 inches to mm
    • Millimeters to Inches Converter >
      • 1 mm to inches
      • 1.5 mm to inches
      • 2 mm to inches
      • 2.5 mm to inches
      • 3 mm to inches
      • 3.5 mm to inches
      • 4 mm to inches
      • 4.5 mm to inches
      • 5 mm to inches
      • 6 mm to inches
      • 8 mm to inches
      • 10 mm to inches
    • Meters to Feet Converter >
      • 1 Meter to Feet
      • 2 Meters to Feet
      • 3 Meters to Feet
      • 5 Meters to Feet
      • 10 Meters to Feet
      • 20 Meters to Feet
      • 30 Meters to Feet
      • 50 Meters to Feet
      • 100 Meters to Feet
    • Centimeters to Inches Converter >
      • 2 cm to inches
      • 3 cm to inches
      • 5 cm to inches
      • 8 cm to inches
      • 10 cm to inches
      • 12 cm to inches
      • 14 cm to inches
      • 15 cm to inches
      • 17 cm to inches
      • 18 cm to inches
      • 20 cm to inches
      • 21 cm to inches
      • 25 cm to inches
      • 28 cm to inches
      • 30 cm to inches
      • 35 cm to inches
      • 40 cm to inches
      • 50 cm to inches
      • 60 cm to inches
      • 36 cm to inches
      • 45 cm to inches
      • 70 cm to inches
      • 80 cm to inches
      • 90 cm to inches
      • 100 cm to inches
      • 120 cm to inches
      • 150 cm to inches
    • Centimeters to Feet Converter >
      • 150 cm to feet
      • 160 cm to feet
      • 162 cm to feet
      • 163 cm to feet
      • 164 cm to feet
      • 165 cm to feet
      • 170 cm to feet
      • 172 cm to feet
      • 173 cm to feet
      • 175 cm to feet
      • 178 cm to feet
      • 180 cm to feet
      • 182 cm to feet
      • 183 cm to feet
      • 185 cm to feet
      • 190 cm to feet
    • Watts to Amps Calculator >
      • 500 Watts to Amps
      • 800 Watts to Amps
      • 1000 Watts to Amps
      • 1200 Watts to Amps
      • 1500 Watts to Amps
      • 2500 Watts to Amps
      • 3000 Watts to Amps
      • 5000 Watts to Amps
    • MCG to MG Converter >
      • 5 mcg to mg
      • 10 mcg to mg
      • 50 mcg to mg
      • 100 mcg to mg
      • 125 mcg to mg
      • 200 mcg to mg
      • 250 mcg to mg
      • 300 mcg to mg
      • 400 mcg to mg
      • 500 mcg to mg
      • 1000 mcg to mg
  • Date & Time
    • Time Duration Calculator
    • Time Conversion Chart
    • Military Times Chart
    • Military Time Now Clock
    • Military Time Converter
    • GMT Time Clock
    • Time Zone
    • Age Calculator
  • Test Prep
    • CFA Exam Overview >
      • How to Prepare for CFA level 1: An Actionable Study Guide
      • 20 CFA Level 1 Practice Questions
      • CFA Practice Questions for level 1
      • 30 CFA Level 1 Practice Questions
      • CFA Level 2 Practice Exam Questions
      • CFA Sample Practice Questions | Level 3| Answers and Explanations
      • CFA Exam Requirements
      • CFA Level 3 Salary
    • SAT Practice Test Math
    • Math Practice Test HiSET
    • Acing the SAT: A Comprehensive and Actionable Study Guide
    • GMAT Practice Questions Math with Answers and Explanations
    • GMAT Math Formulas Sheet
    • Math Practice Test for GED with Answers and Explanations
    • Math Problems to Solve | Practice Test
    • Free Practice TEAS Test
    • ​GRE Practice Math Questions | Free | Answers & Explanations
    • Formulas for GRE Math Section
    • ACT Practice Test with Answers and Explanations
    • CPA Practice Questions
    • ASVAB Practice Test
    • IQ Test
    • How many hours to study for CPA
    • How to Excel in Your CPA Exams: A Comprehensive Preparation Guide
  • Blog
  • Contact Us
    • Advertise Here
    • Privacy Policy
    • Useful Calculators and Converters
  • Español
    • XVIII Roman Numerals
    • XIX Roman Numerals
    • XX Roman Numerals
    • XXI Roman Numerals
    • XVIII Roman Numerals
    • XXII Roman Numerals
    • XXIII Roman Numerals
    • XXIV Roman Numerals
    • XXV Roman Numerals
    • XXVI Roman Numerals
    • XXVII Roman Numerals
    • XXVIII Roman Numerals
    • XXIX Roman Numerals
    • XXX Roman Numerals
    • XXXI Roman Numerals
    • XXXII Roman Numerals
    • XXXIII Roman Numerals
    • XXXIV Roman Numerals
    • XXXV Roman Numerals
    • XXXVI Roman Numerals
    • XXXVII Roman Numerals
    • XXXVIII Roman Numerals
    • XXXIX Roman Numerals
    • XL Roman Numerals
    • XLI Roman Numerals
    • XLII Roman Numerals
    • XLIII Roman Numerals
    • XLIV Roman Numerals
    • XLV Roman Numerals
    • XLVI Roman Numerals
    • XLVII Roman Numerals
    • XLVIII Roman Numerals
    • XLIX Roman Numerals
    • L Roman Numerals
    • LI Roman Numerals
    • LII Roman Numerals
    • LIII Roman Numerals
    • LIV Roman Numerals
    • LV Roman Numerals
    • LVI Roman Numerals
    • LVII Roman Numerals
    • LVIII Roman Numerals
    • LIX Roman Numerals
    • LX Roman Numerals
    • LXI Roman Numerals
    • LXII Roman Numerals
    • LXIII Roman Numerals
    • LXIV Roman Numerals
    • LXV Roman Numerals
    • XVIII Roman Numerals
    • TEMP XVII Roman Numerals
    • XVIII Roman Numerals >
      • TEMP XVII Roman Numerals
  • Mole Calculator
  • BMI Calculator
  • Tic Tac Toe
  • 100s Chart -Printable
  • Online Timer
  • Online Stopwatch
  • How Many Days Until Chritmas
  • ​Simple Interest Formula Explained
  • Understanding Simple Interest vs. Compound Interest
  • 10 Real-World Simple Interest Examples
  • 20 Simple Interest Problems
  • Compound Interest Practice Problems
  • 34 lb to kg
  • 36 lb to kg
  • 37 lb to kg
  • 38 lb to kg
  • 39 lb to kg
  • 41 lb to kg
  • 42 lb to kg
  • 43 lb to kg
  • 44 lb to kg
  • 46 lb to kg
  • 47 lb to kg
  • 48 lb to kg
  • 49 lb to kg
  • 51 lb to kg
  • 52 lb to kg
  • 53 lb to kg
  • 54 lb to kg
  • 56 lb to kg
  • 57 lb to kg
  • 58 lb to kg
  • 59 lb to kg
  • 61 lb to kg
  • 62 lb to kg
  • 63 lb to kg
  • 64 lb to kg
  • 65 lb to kg

100 Math Problems with Step-by-Step Explanations and Correct Answers

Mathematics is a subject that requires logical thinking, problem-solving skills, and a deep understanding of various concepts. In this article, we present 100 math problems covering different topics, including algebra, geometry, calculus, and more. Each problem is followed by a step-by-step explanation of how to solve it, along with the correct answer. Let's dive in!

Problem 1:
Solve the equation: 3x + 5 = 17

Solution:
Step 1: Subtract 5 from both sides: 3x = 17 - 5
Step 2: Simplify: 3x = 12
Step 3: Divide both sides by 3: x = 12 ÷ 3
Step 4: Simplify: x = 4

Answer: x = 4

Problem 2:
Find the value of x in the equation: 2(3x - 1) = 10

Solution:
Step 1: Distribute the 2: 6x - 2 = 10
Step 2: Add 2 to both sides: 6x = 10 + 2
Step 3: Simplify: 6x = 12
Step 4: Divide both sides by 6: x = 12 ÷ 6
Step 5: Simplify: x = 2

Answer: x = 2

Problem 3:
Solve the following inequality: 2x + 3 > 9

Solution:
Step 1: Subtract 3 from both sides: 2x > 9 - 3
Step 2: Simplify: 2x > 6
Step 3: Divide both sides by 2 (since 2 is positive): x > 6 ÷ 2
Step 4: Simplify: x > 3

Answer: x > 3

Problem 4:
Evaluate the expression: 4 + 2 × 3 - 1

Solution:
Step 1: Perform multiplication: 4 + 6 - 1
Step 2: Perform addition and subtraction (left to right): 10 - 1
Step 3: Simplify: 9

Answer: 9

Problem 5:
Factorize the quadratic expression: x² - 4x - 12

Solution:
Step 1: Find two numbers that multiply to -12 and add up to -4. In this case, -6 and 2 satisfy these conditions.
Step 2: Rewrite the middle term: x² - 6x + 2x - 12
Step 3: Group the terms and factor by grouping: x(x - 6) + 2(x - 6)
Step 4: Factor out the common binomial: (x + 2)(x - 6)

Answer: (x + 2)(x - 6)

Problem 6:
Find the area of a rectangle with length 8 cm and width 5 cm.

Solution:
Step 1: Use the formula for the area of a rectangle: Area = length × width
Step 2: Substitute the given values: Area = 8 cm × 5 cm
Step 3: Multiply: Area = 40 cm²

Answer: 40 cm²

Problem 7:
Calculate the volume of a sphere with radius 3 cm. (Use π ≈ 3.14)

Solution:
Step 1: Use the formula for the volume of a sphere: Volume = (4/3)πr³
Step 2: Substitute the given values: Volume = (4/3) × 3.14 × (3 cm)³
Step 3: Simplify: Volume = (4/3) × 3.14 × 27 cm³
Step 4: Multiply: Volume ≈ 113.04 cm³ (rounded to two decimal places)

Answer: Volume ≈ 113.04 cm³

Problem 8:
Solve the system of equations:
2x + 3y = 10
4x - 5y = 8

Solution:
Step 1: Multiply the first equation by 2: 4x + 6y = 20
Step 2: Add the second equation: (4x + 6y) + (4x - 5y) = 20 + 8
Step 3: Simplify: 8x + y = 28
Step 4: Solve for y: y = 28 - 8x
Step 5: Substitute the value of y into the first equation: 2x + 3(28 - 8x) = 10
Step 6: Simplify: 2x + 84 - 24x = 10
Step 7: Combine like terms: -22x + 84 = 10
Step 8: Subtract 84 from both sides: -22x = 10 - 84
Step 9: Simplify: -22x = -74
Step 10: Divide both sides by -22: x = -74 ÷ -22
Step 11: Simplify: x = 3.36 (rounded to two decimal places)
Step 12: Substitute the value of x into the equation y = 28 - 8x: y = 28 - 8(3.36)
Step 13: Simplify: y = 28 - 26.88
Step 14: Simplify further: y ≈ 1.12 (rounded to two decimal places)

Answer: x ≈ 3.36 and y ≈ 1.12

Problem 9:
Find the derivative of the function f(x) = 3x² + 2x - 1.

Solution:
Step 1: Use the power rule for derivatives: f'(x) = 2(3x²) + 1(2x) + 0
Step 2: Simplify: f'(x) = 6x² + 2x

Answer: f'(x) = 6x² + 2x

Problem 10:
Simplify the expression: √(64) - √(16)

Solution:
Step 1: Evaluate the square roots: 8 - 4
Step 2: Simplify: 4

Answer: 4

Problem 11:
Solve the trigonometric equation: sin(x) = 0.5

Solution:
Step 1: Take the inverse sine of both sides: x = arcsin(0.5)
Step 2: Use a calculator or reference table to find the angle: x ≈ 30°

Answer: x ≈ 30°

Problem 12:
Calculate the factorial of 6 (written as 6!).

Solution:
Step 1: Multiply 6 by all positive integers less than it: 6! = 6 × 5 × 4 × 3 × 2 × 1
Step 2: Simplify: 6! = 720

Answer: 6! = 720

Problem 13:
Determine the perimeter of a triangle with side lengths 5 cm, 7 cm, and 9 cm.

Solution:
Step 1: Add the lengths of all three sides: Perimeter = 5 cm + 7 cm + 9 cm
Step 2: Simplify: Perimeter = 21 cm

Answer: Perimeter = 21 cm

Problem 14:
Solve the logarithmic equation: log₂(x) + log₂(2x + 6) = 3

Solution:
Step 1: Combine the logarithms using the product rule: log₂(x(2x + 6)) = 3
Step 2: Simplify the product inside the logarithm: log₂(2x² + 6x) = 3
Step 3: Rewrite the equation in exponential form: 2x² + 6x = 2³
Step 4: Simplify the exponent: 2x² + 6x = 8
Step 5: Rearrange the equation: 2x² + 6x - 8 = 0
Step 6: Factorize: (x - 1)(2x + 8) = 0
Step 7: Set each factor equal to zero and solve: x - 1 = 0 or 2x + 8 = 0
Step 8: Solve for x: x = 1 or x = -4

Answer: x = 1 or x = -4

Problem 15:
Evaluate the integral: ∫(4x² + 3x + 2) dx

Solution:
Step 1: Apply the power rule for integration: ∫(4x² + 3x + 2) dx = (4/3)x³ + (3/2)x² + 2x + C

Answer: ∫(4x² + 3x + 2) dx = (4/3)x³ + (3/2)x² + 2x + C

Problem 16:
Find the equation of a line passing through the points (2, 5) and (4, 9).

Solution:
Step 1: Calculate the slope using the formula: m = (y₂ - y₁) / (x₂ - x₁)
Step 2: Substitute the coordinates: m = (9 - 5) / (4 - 2) = 4 / 2 = 2
Step 3: Use the point-slope form of a line: y - y₁ = m(x - x₁)
Step 4: Substitute the slope and one point: y - 5 = 2(x - 2)
Step 5: Simplify: y - 5 = 2x - 4
Step 6: Rearrange the equation: y = 2x + 1

Answer: The equation of the line is y = 2x + 1

Problem 17:
Solve the quadratic equation: 2x² - 5x - 3 = 0

Solution:
Step 1: Factorize or use the quadratic formula to find the roots of the equation.
Since factorizing is not possible in this case, we'll use the quadratic formula.
Step 2: Apply the quadratic formula: x = (-b ± √(b² - 4ac)) / (2a)
Substituting the values from the given equation: x = (5 ± √(5² - 4(2)(-3))) / (2(2))
Step 3: Simplify: x = (5 ± √(25 + 24)) / 4
x = (5 ± √(49)) / 4
x = (5 ± 7) / 4

For the positive root:
x₁ = (5 + 7) / 4
x₁ = 12 / 4
x₁ = 3

For the negative root:
x₂ = (5 - 7) / 4
x₂ = -2 / 4
x₂ = -0.5

Answer: x = 3 or x = -0.5

Problem 18:
Simplify the complex number expression: (2 + 3i) + (4 - 2i)

Solution:
Step 1: Add the real parts: 2 + 4 = 6
Step 2: Add the imaginary parts: 3i - 2i = i

Answer: (2 + 3i) + (4 - 2i) = 6 + i

Problem 19:
Find the median of the following set of numbers: 5, 3, 9, 1, 7

Solution:
Step 1: Arrange the numbers in ascending order: 1, 3, 5, 7, 9
Step 2: Determine the middle value: The median is the middle number, which is 5.

Answer: The median is 5.

Problem 20:
Calculate the probability of rolling a 6 on a fair six-sided die.

Solution:
Step 1: Determine the number of favorable outcomes: There is only one favorable outcome, rolling a 6.
Step 2: Determine the total number of possible outcomes: There are six possible outcomes, one for each side of the die.
Step 3: Calculate the probability: Probability = favorable outcomes / total outcomes = 1/6

Answer: The probability of rolling a 6 on a fair six-sided die is 1/6.

Problem 21:
Simplify the expression: log₅(125)

Solution:
Step 1: Determine the exponent that gives 125 when raised to the base 5: 5³ = 125
Step 2: Simplify: log₅(125) = 3

Answer: log₅(125) = 3

Problem 22:
Solve the exponential equation: 2^(x + 1) = 16

Solution:
Step 1: Rewrite 16 as a power of 2: 16 = 2^4
Step 2: Set the exponents equal to each other: x + 1 = 4
Step 3: Solve for x: x = 4 - 1
x = 3

Answer: x = 3

Problem 23:
Find the area of a trapezoid with bases of length 6 cm and 10 cm, and a height of 8 cm.

Solution:
Step 1: Use the formula for the area of a trapezoid: Area = (1/2) × (a + b) × h
Step 2: Substitute the given values: Area = (1/2) × (6 cm + 10 cm) × 8 cm
Step 3: Simplify: Area = (1/2) × 16 cm × 8 cm
Step 4: Multiply: Area = 64 cm²

Answer: The area of the trapezoid is 64 cm².

Problem 24:
Solve the matrix equation: [2 1] [x] = [5]
[3 4] [y] [8]

Solution:
Step 1: Multiply the matrix and the column vector: 2x + y = 5 and 3x + 4y = 8
Step 2: Solve the system of equations using any appropriate method (substitution, elimination, etc.):

Multiply the first equation by 3: 6x + 3y = 15
Multiply the second equation by 2: 6x + 8y = 16
Subtract the first equation from the second equation: 6x + 8y - (6x + 3y) = 16 - 15
Simplify: 6x + 8y - 6x - 3y = 1
Simplify further: 5y = 1
Solve for y: y = 1/5
Substitute the value of y into the first equation: 2x + (1/5) = 5
Simplify: 2x + 1/5 = 5
Subtract 1/5 from both sides: 2x = 5 - 1/5
Simplify: 2x = 25/5 - 1/5
Simplify further: 2x = 24/5
Divide both sides by 2: x = (24/5) / 2
Simplify: x = 24/10
Simplify further: x = 12/5
Answer: x = 12/5 and y = 1/5

Problem 25:
Evaluate the limit: lim(x → 0) (3x² + 2x + 1) / x

Solution:
Step 1: Substitute the value of x into the expression: (3(0)² + 2(0) + 1) / 0
Step 2: Simplify: (0 + 0 + 1) / 0
Step 3: Since the denominator is zero, the limit is undefined.

Answer: The limit does not exist.

Problem 26:
Simplify the expression: 4x - 2(3x + 5)

Solution:
Step 1: Distribute the -2: 4x - 6x - 10
Step 2: Combine like terms: -2x - 10

Answer: -2x - 10

Problem 27:
Find the value of x in the equation: 2(x - 3) + 5 = 17

Solution:
Step 1: Distribute the 2: 2x - 6 + 5 = 17
Step 2: Combine like terms: 2x - 1 = 17
Step 3: Add 1 to both sides: 2x = 18
Step 4: Divide both sides by 2: x = 9

Answer: x = 9

Problem 28:
Solve the inequality: 3x + 7 > 4x - 5

Solution:
Step 1: Subtract 3x from both sides: 7 > x - 5
Step 2: Add 5 to both sides: 12 > x

Answer: x < 12

Problem 29:
Evaluate the expression: 3(2² - 1) + 4

Solution:
Step 1: Simplify the exponent: 3(4 - 1) + 4
Step 2: Simplify the parentheses: 3(3) + 4
Step 3: Multiply: 9 + 4

Answer: 13

Problem 30:
Factorize the quadratic expression: x² + 7x + 10

Solution:
Step 1: Find two numbers that multiply to 10 and add up to 7. In this case, 2 and 5 satisfy these conditions.
Step 2: Rewrite the middle term: x² + 2x + 5x + 10
Step 3: Group the terms and factor by grouping: (x² + 2x) + (5x + 10)
Step 4: Factor out the common binomial: x(x + 2) + 5(x + 2)
Step 5: Combine like terms: (x + 2)(x + 5)

Answer: (x + 2)(x + 5)

Problem 31:
Calculate the perimeter of a square with side length 9 cm.

Solution:
Step 1: Use the formula for the perimeter of a square: Perimeter = 4 × side length
Step 2: Substitute the given value: Perimeter = 4 × 9 cm

Answer: Perimeter = 36 cm

Problem 32:
Determine the volume of a cylinder with radius 5 cm and height 10 cm. (Use π ≈ 3.14)

Solution:
Step 1: Use the formula for the volume of a cylinder: Volume = πr²h
Step 2: Substitute the given values: Volume = 3.14 × (5 cm)² × 10 cm
Step 3: Simplify: Volume = 3.14 × 25 cm² × 10 cm
Step 4: Multiply: Volume = 785 cm³

Answer: Volume = 785 cm³

Problem 33:
Solve the system of equations:
2x + 3y = 10
5x - 2y = 7

Solution:
Step 1: Multiply the first equation by 2: 4x + 6y = 20
Step 2: Multiply the second equation by 3: 15x - 6y = 21
Step 3: Add the equations: (4x + 6y) + (15x - 6y) = 20 + 21
Step 4: Simplify: 19x = 41
Step 5: Divide both sides by 19: x = 41/19
Step 6: Substitute the value of x into the first equation: 2(41/19) + 3y = 10
Step 7: Simplify: 82/19 + 3y = 10
Step 8: Subtract 82/19 from both sides: 3y = 10 - 82/19
Step 9: Simplify: 3y = 190/19 - 82/19
Step 10: Combine like terms: 3y = 108/19
Step 11: Divide both sides by 3: y = 108/57
Step 12: Simplify: y = 6/19

Answer: x = 41/19 and y = 6/19

Problem 34:
Find the derivative of the function f(x) = 4x³ + 2x² - 1.

Solution:
Step 1: Take the derivative of each term using the power rule:
f'(x) = 4(3x²) + 2(2x) - 0
Step 2: Simplify: f'(x) = 12x² + 4x

Answer: f'(x) = 12x² + 4x

Problem 35:
Simplify the expression: √(81) - √(25)

Solution:
Step 1: Evaluate the square roots: 9 - 5
Step 2: Simplify: 4

Answer: 4

Problem 36:
Solve the trigonometric equation: cos(x) = 0.5

Solution:
Step 1: Take the inverse cosine of both sides: x = arccos(0.5)
Step 2: Use a calculator or reference table to find the angle: x = π/3 or x = 2π/3

Answer: x = π/3 or x = 2π/3

Problem 37:
Calculate the probability of rolling a 6 on a fair six-sided die.

Solution:
Step 1: Determine the number of favorable outcomes: There is only one favorable outcome, rolling a 6.
Step 2: Determine the total number of possible outcomes: There are six possible outcomes, one for each side of the die.
Step 3: Calculate the probability: Probability = favorable outcomes / total outcomes = 1/6

Answer: The probability of rolling a 6 on a fair six-sided die is 1/6.

Problem 38:
Simplify the expression: log₅(125)

Solution:
Step 1: Determine the exponent that gives 125 when raised to the base 5: 5³ = 125
Step 2: Simplify: log₅(125) = 3

Answer: log₅(125) = 3

Problem 39:
Solve the exponential equation: 2^(x + 1) = 16

Solution:
Step 1: Rewrite 16 as a power of 2: 16 = 2^4
Step 2: Set the exponents equal to each other: x + 1 = 4
Step 3: Solve for x: x = 4 - 1
x = 3

Answer: x = 3

Problem 40:
Find the area of a trapezoid with bases of length 6 cm and 10 cm, and a height of 8 cm.

Solution:
Step 1: Use the formula for the area of a trapezoid: Area = (1/2) × (a + b) × h
Step 2: Substitute the given values: Area = (1/2) × (6 cm + 10 cm) × 8 cm
Step 3: Simplify: Area = (1/2) × 16 cm × 8 cm
Step 4: Multiply: Area = 64 cm²

Answer: The area of the trapezoid is 64 cm².

Problem 41:
Solve the matrix equation: [2 1] [x] = [5]
[3 4] [y] [8]

Solution:
Step 1: Multiply the inverse of the matrix on both sides to isolate the variables.

[2 1]⁻¹ [2 1] [x] = [2 1]⁻¹ [5]
[3 4] [y] [3 4] [8]

[x] = [2 1]⁻¹ [5]
[y] [3 4] [8]

Step 2: Calculate the inverse of the matrix [2 1]
[3 4]

The inverse of the matrix is:

[ 4 -1]
[-3 2]

Step 3: Multiply the inverse of the matrix by the right-hand side:

[x] = [ 4 -1] [5]
[y] [-3 2] [8]

Step 4: Simplify:

[x] = [4(5) + (-1)(8)]
[y] [-3(5) + 2(8)]

[x] = [20 - 8]
[y] [-15 + 16]

[x] = [12]
[y] [ 1]

Answer: x = 12 and y = 1

Problem 42:
Evaluate the limit: lim(x → 0) (3x² + 2x + 1) / x

Solution:
Step 1: Substitute the value of x into the expression: (3(0)² + 2(0) + 1) / 0
Step 2: Simplify: (0 + 0 + 1) / 0
Step 3: Since the denominator is zero, the limit is undefined.

Answer: The limit does not exist.

Problem 43:
Solve the logarithmic equation: log₂(x) + log₂(2x + 6) = 3

Solution:
Step 1: Combine the logarithms using the product rule: log₂(x(2x + 6)) = 3
Step 2: Simplify the product inside the logarithm: log₂(2x² + 6x) = 3
Step 3: Rewrite the equation in exponential form: 2x² + 6x = 2³
Step 4: Simplify the exponent: 2x² + 6x = 8
Step 5: Rearrange the equation: 2x² + 6x - 8 = 0
Step 6: Factorize: (x - 1)(2x + 4) = 0
Step 7: Set each factor equal to zero and solve: x - 1 = 0 or 2x + 4 = 0
Step 8: Solve for x: x = 1 or x = -2

Answer: x = 1 or x = -2

Problem 44:
Find the area of a circle with a radius of 6 cm. (Use π ≈ 3.14)

Solution:
Step 1: Use the formula for the area of a circle: Area = πr²
Step 2: Substitute the given value: Area = 3.14 × (6 cm)²
Step 3: Simplify: Area = 3.14 × 36 cm²
Step 4: Multiply: Area = 113.04 cm²

Answer: The area of the circle is 113.04 cm².

Problem 45:
Solve the equation: 2sin(x) = 1

Solution:
Step 1: Divide both sides by 2: sin(x) = 1/2
Step 2: Use a calculator or reference table to find the angles where sin(x) = 1/2: x = π/6 or x = 5π/6

Answer: x = π/6 or x = 5π/6


Problem 46:
Simplify the expression: (3x + 2y) - (2x - y)

Solution:
Step 1: Distribute the negative sign: 3x + 2y - 2x + y
Step 2: Combine like terms: (3x - 2x) + (2y + y)
Step 3: Simplify: x + 3y

Answer: x + 3y

Problem 47:
Find the value of x in the equation: 5(x - 2) = 3(2x + 1)

Solution:
Step 1: Distribute the 5 and 3: 5x - 10 = 6x + 3
Step 2: Subtract 5x and 6x from both sides: -10 - 3 = 6x - 5x
Step 3: Simplify: -13 = x

Answer: x = -13

Problem 48:
Solve the inequality: 2x + 3 < 5x - 2

Solution:
Step 1: Subtract 2x from both sides: 3 < 3x - 2
Step 2: Add 2 to both sides: 5 < 3x
Step 3: Divide both sides by 3: 5/3 < x

Answer: x > 5/3

Problem 49:
Evaluate the expression: 2² + 3³ - 4⁴

Solution:
Step 1: Evaluate the exponents: 2² + 3³ - 4⁴ = 4 + 27 - 256
Step 2: Simplify: 4 + 27 - 256 = -225

Answer: -225

Problem 50:
Factorize the quadratic expression: 2x² + 5x + 3

Solution:
Step 1: Find two numbers that multiply to 6 and add up to 5. In this case, 2 and 3 satisfy these conditions.
Step 2: Rewrite the middle term: 2x² + 2x + 3x + 3
Step 3: Group the terms and factor by grouping: (2x² + 2x) + (3x + 3)
Step 4: Factor out the common binomial: 2x(x + 1) + 3(x + 1)
Step 5: Combine like terms: (2x + 3)(x + 1)

Answer: (2x + 3)(x + 1)

Problem 51:
Calculate the perimeter of a rectangle with length 12 cm and width 5 cm.

Solution:
Step 1: Use the formula for the perimeter of a rectangle: Perimeter = 2(length + width)
Step 2: Substitute the given values: Perimeter = 2(12 cm + 5 cm)
Step 3: Simplify: Perimeter = 2(17 cm)
Step 4: Multiply: Perimeter = 34 cm

Answer: The perimeter of the rectangle is 34 cm.

Problem 52:
Determine the volume of a cone with radius 4 cm and height 8 cm. (Use π ≈ 3.14)

Solution:
Step 1: Use the formula for the volume of a cone: Volume = (1/3) × πr²h
Step 2: Substitute the given values: Volume = (1/3) × 3.14 × (4 cm)² × 8 cm
Step 3: Simplify: Volume = (1/3) × 3.14 × 16 cm² × 8 cm
Step 4: Multiply: Volume = (1/3) × 3.14 × 128 cm³
Step 5: Simplify further: Volume ≈ 134.19 cm³ (rounded to two decimal places)

Answer: The volume of the cone is approximately 134.19 cm³.

Problem 53:
Solve the system of equations:
3x + 2y = 10
4x - 5y = -3

Solution:
Step 1: Multiply the first equation by 4: 12x + 8y = 40
Step 2: Multiply the second equation by 3: 12x - 15y = -9
Step 3: Subtract the second equation from the first equation: (12x + 8y) - (12x - 15y) = 40 - (-9)
Step 4: Simplify: 12x + 8y - 12x + 15y = 40 + 9
Step 5: Combine like terms: 23y = 49
Step 6: Divide both sides by 23: y = 49/23
Step 7: Substitute the value of y into the first equation: 3x + 2(49/23) = 10
Step 8: Simplify: 3x + 98/23 = 10
Step 9: Subtract 98/23 from both sides: 3x = 10 - 98/23
Step 10: Simplify: 3x = 230/23 - 98/23
Step 11: Combine like terms: 3x = 132/23
Step 12: Divide both sides by 3: x = (132/23) / 3
Step 13: Simplify: x = 132/69
Step 14: Simplify further: x = 44/23

Answer: x = 44/23 and y = 49/23

Problem 54:
Find the derivative of the function f(x) = sin(x) + cos(x).

Solution:
Step 1: Take the derivative of each term using the sum rule:
f'(x) = cos(x) - sin(x)

Answer: f'(x) = cos(x) - sin(x)

Problem 55:
Simplify the expression: √(36) + √(49)

Solution:
Step 1: Evaluate the square roots: 6 + 7
Step 2: Simplify: 13

Answer: 13

Problem 56:
Solve the trigonometric equation: tan(x) = 1

Solution:
Step 1: Take the inverse tangent of both sides: x = arctan(1)
Step 2: Use a calculator or reference table to find the angle: x = π/4

Answer: x = π/4

Problem 57:
Calculate the factorial of 7 (written as 7!).

Solution:
Step 1: Multiply 7 by all positive integers less than it: 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1
Step 2: Simplify: 7! = 5040

Answer: 7! = 5040

Problem 58:
Determine the area of a parallelogram with base length 6 cm and height 8 cm.

Solution:
Step 1: Use the formula for the area of a parallelogram: Area = base × height
Step 2: Substitute the given values: Area = 6 cm × 8 cm
Step 3: Multiply: Area = 48 cm²

Answer: The area of the parallelogram is 48 cm².

Problem 59:
Solve the logarithmic equation: log₃(x) + log₃(x - 4) = 2

Solution:
Step 1: Combine the logarithms using the product rule: log₃(x(x - 4)) = 2
Step 2: Simplify the product inside the logarithm: log₃(x² - 4x) = 2
Step 3: Rewrite the equation in exponential form: 3² = x² - 4x
Step 4: Simplify the exponent: 9 = x² - 4x
Step 5: Rearrange the equation: x² - 4x - 9 = 0
Step 6: Solve the quadratic equation using factoring, completing the square, or the quadratic formula:

Factoring: (x - 3)(x + 3) = 0
Setting each factor equal to zero: x - 3 = 0 or x + 3 = 0
Solving for x: x = 3 or x = -3
Answer: x = 3 or x = -3

Problem 60:
Evaluate the integral: ∫(2x + 5) dx

Solution:
Step 1: Apply the power rule for integration: ∫(2x + 5) dx = x² + 5x + C

Answer: ∫(2x + 5) dx = x² + 5x + C (where C is the constant of integration)

Problem 61:
Find the equation of the line passing through the points (-1, 3) and (2, -4).

Solution:
Step 1: Calculate the slope using the formula: m = (y₂ - y₁) / (x₂ - x₁)
Step 2: Substitute the coordinates: m = (-4 - 3) / (2 - (-1)) = -7 / 3
Step 3: Use the point-slope form of a line: y - y₁ = m(x - x₁)
Step 4: Substitute the slope and one point: y - 3 = (-7/3)(x - (-1))
Step 5: Simplify: y - 3 = (-7/3)(x + 1)
Step 6: Rearrange the equation: y = (-7/3)x - 7/3 + 9/3
Step 7: Simplify: y = (-7/3)x + 2/3

Answer: The equation of the line is y = (-7/3)x + 2/3

Problem 62:
Solve the quadratic equation: x² - 6x + 5 = 0

Solution:
Step 1: Factorize or use the quadratic formula to find the roots of the equation.

Factoring: (x - 5)(x - 1) = 0
Setting each factor equal to zero: x - 5 = 0 or x - 1 = 0
Solving for x: x = 5 or x = 1
Answer: x = 5 or x = 1

​Problem 63:
Simplify the expression: 2(x - 3) - 3(2x + 1)

Solution:
Step 1: Distribute the 2 and -3: 2x - 6 - 6x - 3
Step 2: Combine like terms: (2x - 6x) + (-6 - 3)
Step 3: Simplify: -4x - 9

Answer: -4x - 9

Problem 64:
Find the value of x in the equation: 4(x + 2) = 3(x - 1) + 5

Solution:
Step 1: Distribute the 4 and 3: 4x + 8 = 3x - 3 + 5
Step 2: Combine like terms: 4x + 8 = 3x + 2
Step 3: Subtract 3x from both sides: x + 8 = 2
Step 4: Subtract 8 from both sides: x = 2 - 8
Step 5: Simplify: x = -6

Answer: x = -6

Problem 65:
Solve the inequality: 3x + 5 ≥ 2x - 3

Solution:
Step 1: Subtract 2x from both sides: x + 5 ≥ -3
Step 2: Subtract 5 from both sides: x ≥ -8

Answer: x ≥ -8

Problem 66:
Evaluate the expression: 5² - 4(3 + 1)

Solution:
Step 1: Simplify within parentheses: 5² - 4(4)
Step 2: Evaluate the exponent: 5² = 25
Step 3: Multiply: 25 - 4(4)
Step 4: Simplify further: 25 - 16
Step 5: Subtract: 9

Answer: 9

Problem 67:
Factorize the quadratic expression: 3x² + 7x - 2

Solution:
Step 1: Find two numbers that multiply to -6 and add up to 7. In this case, 8 and -1 satisfy these conditions.
Step 2: Rewrite the middle term: 3x² + 8x - x - 2
Step 3: Group the terms and factor by grouping: (3x² + 8x) + (-x - 2)
Step 4: Factor out the common binomial: x(3x + 8) - 1(3x + 8)
Step 5: Combine like terms: (x - 1)(3x + 8)

Answer: (x - 1)(3x + 8)

Problem 68:
Calculate the perimeter of a triangle with side lengths 4 cm, 6 cm, and 7 cm.

Solution:
Step 1: Add the lengths of all three sides: 4 cm + 6 cm + 7 cm
Step 2: Add: 17 cm

Answer: The perimeter of the triangle is 17 cm.

Problem 69:
Determine the volume of a rectangular prism with length 8 cm, width 5 cm, and height 3 cm.

Solution:
Step 1: Use the formula for the volume of a rectangular prism: Volume = length × width × height
Step 2: Substitute the given values: Volume = 8 cm × 5 cm × 3 cm
Step 3: Multiply: Volume = 120 cm³

Answer: The volume of the rectangular prism is 120 cm³.

Problem 70:
Solve the system of equations:
2x + y = 5
3x - 2y = 4

Solution:
Step 1: Multiply the first equation by 2: 4x + 2y = 10
Step 2: Add the equations: (4x + 2y) + (3x - 2y) = 10 + 4
Step 3: Simplify: 7x = 14
Step 4: Divide both sides by 7: x = 2
Step 5: Substitute the value of x into the first equation: 2(2) + y = 5
Step 6: Simplify: 4 + y = 5
Step 7: Subtract 4 from both sides: y = 5 - 4
Step 8: Simplify: y = 1

Answer: x = 2 and y = 1

Problem 71:
Find the derivative of the function f(x) = e^x + 3x².

Solution:
Step 1: Take the derivative of each term using the sum rule and the power rule:
f'(x) = e^x + 6x

Answer: f'(x) = e^x + 6x

Problem 72:
Simplify the expression: log₄(16) + log₄(2)

Solution:
Step 1: Evaluate the logarithms: 2 + 1
Step 2: Simplify: 3

Answer: 3

Problem 73:
Solve the trigonometric equation: sin(x) = 0.5

Solution:
Step 1: Take the inverse sine of both sides: x = arcsin(0.5)
Step 2: Use a calculator or reference table to find the angle: x = π/6 or x = 5π/6

Answer: x = π/6 or x = 5π/6

Problem 74:
Calculate the factorial of 6 (written as 6!).

Solution:
Step 1: Multiply 6 by all positive integers less than it: 6! = 6 × 5 × 4 × 3 × 2 × 1
Step 2: Simplify: 6! = 720

Answer: 6! = 720

Problem 75:
Determine the area of a trapezoid with bases of length 10 cm and 6 cm, and a height of 8 cm.

Solution:
Step 1: Use the formula for the area of a trapezoid: Area = (1/2) × (a + b) × h
Step 2: Substitute the given values: Area = (1/2) × (10 cm + 6 cm) × 8 cm
Step 3: Simplify: Area = (1/2) × 16 cm × 8 cm
Step 4: Multiply: Area = 64 cm²

Answer: The area of the trapezoid is 64 cm².

Problem 76:
Simplify the expression: cos²(x) - sin²(x)

Solution:
Step 1: Use the trigonometric identity cos²(x) - sin²(x) = cos(2x).
Step 2: Simplify the expression: cos²(x) - sin²(x) = cos(2x).

Answer: cos²(x) - sin²(x) simplifies to cos(2x).

Problem 77:
Find the equation of the line perpendicular to the line 2x - 3y = 5 and passing through the point (4, 2).

Solution:
Step 1: Find the slope of the given line by rearranging it in slope-intercept form: 2x - 3y = 5 -> -3y = -2x + 5 -> y = (2/3)x - 5/3
Step 2: Determine the slope of the perpendicular line by taking the negative reciprocal of (2/3): m = -3/2
Step 3: Use the point-slope form of a line with the given point: y - 2 = (-3/2)(x - 4)
Step 4: Simplify: y - 2 = (-3/2)x + 6
Step 5: Rearrange the equation: y = (-3/2)x + 8

Answer: The equation of the line perpendicular to 2x - 3y = 5 and passing through the point (4, 2) is y = (-3/2)x + 8.

Problem 78:
Solve the quadratic equation: 2x² + 5x - 3 = 0

Solution:
Step 1: Factorize or use the quadratic formula to find the roots of the equation.

Factoring: (2x - 1)(x + 3) = 0
Setting each factor equal to zero: 2x - 1 = 0 or x + 3 = 0
Solving for x: x = 1/2 or x = -3
Answer: x = 1/2 or x = -3

Problem 79:
Evaluate the integral: ∫(3x² - 2x + 4) dx

Solution:
Step 1: Apply the power rule for integration: ∫(3x² - 2x + 4) dx = x³ - x² + 4x + C

Answer: ∫(3x² - 2x + 4) dx = x³ - x² + 4x + C (where C is the constant of integration)

Problem 80:
Find the equation of the circle with center (-2, 3) and radius 5.

Solution:
Step 1: Use the standard form of the equation for a circle: (x - h)² + (y - k)² = r²
Step 2: Substitute the given values: (x - (-2))² + (y - 3)² = 5²
Step 3: Simplify: (x + 2)² + (y - 3)² = 25

Answer: The equation of the circle is (x + 2)² + (y - 3)² = 25.

Problem 81:
Simplify the expression: 3! + 4! - 2!

Solution:
Step 1: Evaluate the factorials: 3! = 3 × 2 × 1 = 6, 4! = 4 × 3 × 2 × 1 = 24, 2! = 2 × 1 = 2
Step 2: Simplify: 6 + 24 - 2 = 28

Answer: 3! + 4! - 2! simplifies to 28.

Problem 82:
Find the value of x in the equation: log₂(x) = 5

Solution:
Step 1: Rewrite the equation in exponential form: 2⁵ = x
Step 2: Evaluate the exponent: 32 = x

Answer: x = 32

Problem 83:
Solve the trigonometric equation: cos²(x) + sin²(x) = 1

Solution:
Step 1: Use the Pythagorean identity for trigonometric functions: cos²(x) + sin²(x) = 1

Answer: The equation cos²(x) + sin²(x) = 1 holds true for all values of x.

Problem 84:
Calculate the perimeter of a square with side length 10 cm.

Solution:
Step 1: Use the formula for the perimeter of a square: Perimeter = 4 × side length
Step 2: Substitute the given value: Perimeter = 4 × 10 cm
Step 3: Multiply: Perimeter = 40 cm

Answer: The perimeter of the square is 40 cm.

Problem 85:
Determine the volume of a sphere with radius 3 cm. (Use π ≈ 3.14)

Solution:
Step 1: Use the formula for the volume of a sphere: Volume = (4/3) × π × radius³
Step 2: Substitute the given value: Volume = (4/3) × 3.14 × (3 cm)³
Step 3: Simplify: Volume = (4/3) × 3.14 × 27 cm³
Step 4: Multiply: Volume ≈ 113.04 cm³ (rounded to two decimal places)

Answer: The volume of the sphere is approximately 113.04 cm³.

Problem 86:
Solve the system of equations:
2x + 3y = 7
4x - 5y = 1

Solution:
Step 1: Multiply the first equation by 2: 4x + 6y = 14
Step 2: Multiply the second equation by 3: 12x - 15y = 3
Step 3: Add the equations: (4x + 6y) + (12x - 15y) = 14 + 3
Step 4: Simplify: 16x - 9y = 17
Step 5: Solve for y in terms of x: -9y = 17 - 16x
Step 6: Divide both sides by -9: y = (16x - 17)/9
Step 7: Substitute the value of y into the first equation: 2x + 3[(16x - 17)/9] = 7
Step 8: Simplify: 2x + (48x - 51)/9 = 7
Step 9: Multiply through by 9 to eliminate the denominator: 18x + 48x - 51 = 63
Step 10: Combine like terms: 66x - 51 = 63
Step 11: Add 51 to both sides: 66x = 114
Step 12: Divide both sides by 66: x = 114/66
Step 13: Simplify: x = 19/11

Answer: x = 19/11, y = (16(19/11) - 17)/9

Problem 87:
Find the derivative of the function f(x) = 5x³ - 2x² + 3x - 1.

Solution:
Step 1: Take the derivative of each term using the power rule:
f'(x) = (3)(5x²) - (2)(2x) + 3
Step 2: Simplify: f'(x) = 15x² - 4x + 3

Answer: f'(x) = 15x² - 4x + 3

Problem 88:
Simplify the expression: √(64) - √(9)

Solution:
Step 1: Evaluate the square roots: 8 - 3
Step 2: Simplify: 5

Answer: 5

Problem 89:
Solve the equation: 2x + 5 = 3x - 1

Solution:
Step 1: Subtract 2x from both sides: 5 = x - 1
Step 2: Add 1 to both sides: 6 = x

Answer: x = 6

Problem 90:
Find the equation of the line parallel to the line 3x + 2y = 10 and passing through the point (1, 4).

Solution:
Step 1: Rewrite the given equation in slope-intercept form: 2y = -3x + 10 -> y = (-3/2)x + 5
Step 2: Determine the slope of the given line: The coefficient of x is -3/2, so the slope is -3/2.
Step 3: The line parallel to this line will have the same slope, -3/2.
Step 4: Use the point-slope form of a line with the given point: y - 4 = (-3/2)(x - 1)
Step 5: Simplify: y - 4 = (-3/2)x + 3/2
Step 6: Rearrange the equation: y = (-3/2)x + 3/2 + 4
Step 7: Simplify further: y = (-3/2)x + 11/2

Answer: The equation of the line parallel to 3x + 2y = 10 and passing through the point (1, 4) is y = (-3/2)x + 11/2.

Problem 91:
Solve the quadratic equation: x² - 8x + 12 = 0

Solution:
Step 1: Factorize or use the quadratic formula to find the roots of the equation.

Factoring: (x - 2)(x - 6) = 0
Setting each factor equal to zero: x - 2 = 0 or x - 6 = 0
Solving for x: x = 2 or x = 6
Answer: x = 2 or x = 6

Problem 92:
Evaluate the integral: ∫(2cos(x) - 3sin(x)) dx

Solution:
Step 1: Apply the integral rules for cosine and sine functions: ∫(2cos(x) - 3sin(x)) dx = 2∫cos(x) dx - 3∫sin(x) dx
Step 2: Evaluate the integrals using the antiderivatives: 2sin(x) + 3cos(x) + C

Answer: ∫(2cos(x) - 3sin(x)) dx = 2sin(x) + 3cos(x) + C (where C is the constant of integration)

Problem 93:
Find the equation of the parabola with vertex (-2, 3) and focus (-2, 5).

Solution:
Step 1: The parabola is vertical, so the equation takes the form (x - h)² = 4p(y - k), where (h, k) is the vertex.
Step 2: Substitute the given values: (x + 2)² = 4p(y - 3)
Step 3: Since the focus is two units above the vertex, the distance between the focus and vertex is 2p = 2.
Step 4: Solve for p: p = 1
Step 5: Substitute the value of p into the equation: (x + 2)² = 4(y - 3)
Step 6: Simplify: (x + 2)² = 4y - 12
Step 7: Expand and rearrange the equation: x² + 4x + 4 = 4y
Step 8: Divide both sides by 4: (1/4)x² + x + 1 = y

Answer: The equation of the parabola is y = (1/4)x² + x + 1.

Problem 94:
Simplify the expression: 3³ - 2² + 5¹

Solution:
Step 1: Evaluate the exponents and addition: 27 - 4 + 5
Step 2: Simplify: 28

Answer: 28

Problem 95:
Find the value of x in the equation: 4(x - 1) = 3(x + 2)

Solution:
Step 1: Distribute the 4 and 3: 4x - 4 = 3x + 6
Step 2: Subtract 3x from both sides: x - 4 = 6
Step 3: Add 4 to both sides: x = 10

Answer: x = 10

Problem 96:
Solve the inequality: 2x + 5 > 3x - 1

Solution:
Step 1: Subtract 2x from both sides: 5 > x - 1
Step 2: Add 1 to both sides: 6 > x

Answer: x < 6

Problem 97:
Evaluate the expression: 2³ + 3² - 4¹

Solution:
Step 1: Evaluate the exponents and addition: 8 + 9 - 4
Step 2: Simplify: 13

Answer: 13

Problem 98:
Factorize the quadratic expression: x² - 9

Solution:
Step 1: Recognize the difference of squares pattern: x² - 9 = (x - 3)(x + 3)

Answer: (x - 3)(x + 3)

Problem 99:
Calculate the area of a triangle with base length 5 cm and height 8 cm.

Solution:
Step 1: Use the formula for the area of a triangle: Area = (1/2) × base × height
Step 2: Substitute the given values: Area = (1/2) × 5 cm × 8 cm
Step 3: Multiply: Area = 20 cm²

Answer: The area of the triangle is 20 cm².

Problem 100:
Solve the logarithmic equation: log₄(x - 1) + log₄(x + 1) = 2

Solution:
Step 1: Combine the logarithms using the product rule: log₄((x - 1)(x + 1)) = 2
Step 2: Simplify the product inside the logarithm: log₄(x² - 1) = 2
Step 3: Rewrite the equation in exponential form: 4² = x² - 1
Step 4: Evaluate the exponent: 16 = x² - 1
Step 5: Add 1 to both sides: 17 = x²
Step 6: Take the square root of both sides: x = ±√17

Answer: x = ±√17

About This Math Problems Set

In this article, we have covered 25 diverse math problems that span various mathematical concepts, including algebra, geometry, calculus, and more. Each problem was accompanied by a step-by-step explanation of how to solve it, ensuring a clear understanding of the solution process. By practicing these problems, you can enhance your math skills and strengthen your problem-solving abilities. Remember, practice is key to becoming proficient in mathematics.
  • Z Table
    • Z Scores to Percentiles Chart
    • Z Score Calculator
    • Z Score Probability Calculator
    • Interactive Z Table
    • Z Score Formula
    • How to calculate the z score
    • How To Use Z-Score Table
    • Calculate Z-score
    • Probability in Statistics
    • Parameters in Statistics
    • Percentile Rank
    • Z Score Chart Basics
    • History of Normal Distirbution
    • Statistics Z Score Jokes
    • When to Use Z Test vs T Test
    • Z Score Practice Problems
    • Z Score Problems
    • Normal Distribution Problems
    • Confidence Interval Calculator >
      • Confidence Interval in Excel
      • 90 confidence interval z score
      • 95 Confidence Interval Z Score
      • 99 Confidence Interval Z Score
    • Z Score Confidence Interval
  • Statistics
    • Statistics Symbols
    • Statistics Formulas >
      • Binomial Coefficient
      • Empirical Rule
      • Correlation Coefficient
    • P Value Calculator >
      • P Value Calculator from Z Score
      • P Value Calculator from T Score
      • P Value Calculator from Chi-Square
      • P Value Calculator from F Ratio (ANOVA)
      • P Value Calculator from Pearson R
      • P Value Calculator Tukey's Q Score
    • Cumulative Binomial Probability Calculator
    • Normal CDF Calculator >
      • Normal CDF Formula
      • Non-normal Distribution
      • How to find normal cdf ti 84
      • Examples of Standard Deviation
      • Sample Standard Deviation on Calculator
      • Standard Deviation vs Variance
      • Population vs. Sample
      • Quantitative vs. Qualitative Data
      • Formula of Standard Deviation for Grouped Data
      • Null Hypothesis vs. Alternative Hypothesis
      • Discrete vs. Continuous Data
      • Mean vs. Median vs. Mode
      • Bayesian vs. Frequentist Statistics
      • What is High Standard Deviation
      • What Does a Standard Deviation of 0 Mean
      • Observational Study vs. Experimental Study
      • Parametric vs. Non-parametric tests
      • What is 1 Standard Deviation Above the Mean
      • How to find correlation coefficient on ti 84
      • How to find linear regression on ti-84
      • How to find solving equations on ti-84
      • How to find quadratic regression on ti-84
      • How to find factorial on ti-84
      • How to find integrals on ti-84
      • How to find confidence intervals on ti-84
      • How to find z-score on ti-84
      • How to find derivatives on ti-84
      • How to find summation on ti-84
      • How to find anova on ti-84
      • How to find graphing functions on ti-84
      • How to find factorial on ti-89
      • How to find integrals on ti-89
      • How to find standard deviation on ti-89
      • How to find derivatives on ti-89
      • How to find linear regression on ti-89
      • How to find matrix operations on ti-89
      • How to find summation on ti-89
      • How to find variance on ti-89
      • How to find Correlation on TI-Nspire
      • How to find Variance on TI-Nspire
      • How to find Standard Deviation on TI-Nspire
      • What Does a Standard Deviation of 2 Mean
      • How to find Linear Regression on TI-Nspire
      • How to find Quadratic Regression on TI-Nspire
      • How to find Matrix Operations on TI-Nspire
      • How to find Solving Equations on TI-Nspire
      • How to find Graphing Functions on TI-Nspire
      • How to find Integrals on TI-Nspire
      • How to find Derivatives on TI-Nspire
      • How to find Summation on TI-Nspire
      • How to find Factorial on TI-Nspire
      • How to find Combinations and Permutations on TI-Nspire
      • How to find Z-Score on TI-Nspire
      • How to find Probability Distributions on TI-Nspire
      • How to find ANOVA on TI-Nspire
      • How to find Histograms on TI-Nspire
      • How to find Box-and-Whisker Plots on TI-Nspire
      • How to find Present and Future Value on TI-Nspire
      • How to find Confidence Intervals on TI-Nspire
      • Population Standard Deviation and Sample Standard Deviation
    • Correlation Calculator >
      • Covariance vs. Correlation
    • Dice Roller
    • Probability Distribution Calculator
    • Interquartile Range Calculator
    • Empirical Rule Calculator
    • Mean, Median and Mode Calculator
    • Average Calculator
    • Linear Regression Calculator
    • Sample Size Calculator
    • Other Statistical Tables >
      • T Value Table
      • Chi-Square Table
      • F Distribution Table
    • Standard Deviation Calculator
    • Standard Deviation Problems
    • Normal vs Non-Normal Distribution: Understanding the Differences
    • Covariance vs. Variance: Understanding the Differences
    • Explanatory Variable: Understanding Its Role in Statistical Analysis
    • Independent variable vs dependent
    • What is a Residual in Statistics?
    • Left Skewed vs. Right Skewed Distributions
    • How to Find Variance on ti 84
    • Real Life Examples of Correlation
    • What is Regression Analysis?
    • Statistics Forum
  • Math
    • Combination Calculator
    • How to Calculate a Combination
    • Combination Formula in Statistics
    • Permutation Calculator
    • Distance Between Two Points Calculator
    • Exploring 7 Unsolvable Math Problems >
      • Riemann Hypothesis
    • Math Problems >
      • Math Problems for 1st Graders
      • Math Problems for 2nd Graders
      • Math Problems for 3rd Graders
      • Math Problems for 4th Graders
      • Math Problems for 5th Graders
      • Math Problems for 6th Graders
      • Math Problems for 7th Graders
      • Math Problems for 8th Graders
      • Math Problems for 9th Graders
      • Math Problems for 10th Graders
      • Math Problems for 11th Graders
    • Times Tables >
      • 1 Times Table
      • 2 Times Table
      • 3 Times Table
      • 4 Times Table
      • 5 Times Table
      • 6 Times Table
      • 7 Times Table
      • 8 Times Table
      • 9 Times Table
      • 10 Times Table
    • Multiplication Tables >
      • Multiplication Table by 20
      • Multiplication Table by 19
      • Multiplication Table by 18
      • Multiplication Table by 17
      • Multiplication Table by 16
      • Multiplication Table by 15
      • Multiplication Table by 14
      • Multiplication Table by 13
      • Multiplication Table by 12
      • Multiplication Table by 11
      • Multiplication Table by 10
      • Multiplication Table by 9
      • Multiplication Table by 8
      • Multiplication Table by 7
      • Multiplication Table by 6
      • Multiplication Table by 5
      • Multiplication Table by 4
      • Multiplication Table by 3
    • Roman Numerals Chart
    • Roman Numerals >
      • Roman Numerals Converter
      • I Roman Numerals
      • II Roman Numerals
      • III Roman Numerals
      • IV Roman Numerals
      • V Roman Numerals
      • VI Roman Numerals
      • VII Roman Numerals
      • VIII Roman Numerals
      • IX Roman Numerals
      • X Roman Numerals
      • XI Roman Numerals
      • XII Roman Numerals
      • XIII Roman Numerals
      • XIV Roman Numerals
      • XV Roman Numerals
      • XVI Roman Numerals
      • XVII Roman Numerals
      • XVIII Roman Numerals
      • LXVI Roman Numerals
      • LXVII Roman Numerals
      • LXVIII Roman Numerals
      • LXIX Roman Numerals
      • LXX Roman Numerals
      • LXXI Roman Numerals
      • LXXII Roman Numerals
      • LXXIII Roman Numerals
      • LXXIV Roman Numerals
      • LXXV Roman Numerals
      • LXXVI Roman Numerals
      • LXXVII Roman Numerals
      • LXXVIII Roman Numerals
      • LXXIX Roman Numerals
      • LXXX Roman Numerals
      • LXXXI Roman Numerals
      • LXXXII Roman Numerals
      • LXXXIII Roman Numerals
      • LXXXIV Roman Numerals
      • LXXXV Roman Numerals
      • LXXXVI Roman Numerals
      • LXXXVII Roman Numerals
      • LXXXVIII Roman Numerals
      • LXXXIX Roman Numerals
      • XC Roman Numerals
      • XCI Roman Numerals
      • XCII Roman Numerals
      • XCIII Roman Numerals
      • XCIV Roman Numerals
      • XCV Roman Numerals
      • XCVI Roman Numerals
      • XCVII Roman Numerals
      • XCVIII Roman Numerals
      • XCIX Roman Numerals
      • C Roman Numerals
      • CI Roman Numerals
      • CII Roman Numerals
      • CIII Roman Numerals
      • CIV Roman Numerals
      • CV Roman Numerals
      • CVI Roman Numerals
      • CVII Roman Numerals
      • CVIII Roman Numerals
      • CIX Roman Numerals
      • CX Roman Numerals
      • CXI Roman Numerals
      • CXII Roman Numerals
      • CXIII Roman Numerals
      • CXIV Roman Numerals
      • CXV Roman Numerals
      • CXVI Roman Numerals
      • CXVII Roman Numerals
      • CXVIII Roman Numerals
      • CXIX Roman Numerals
      • CXX Roman Numerals
      • CXXI Roman Numerals
      • CXXII Roman Numerals
      • CXXIII Roman Numerals
      • CXXIV Roman Numerals
      • CXXV Roman Numerals
      • CXXVI Roman Numerals
      • CXXVII Roman Numerals
      • CXXVIII Roman Numerals
      • CXXIX Roman Numerals
      • CXXX Roman Numerals
      • CXXXI Roman Numerals
      • CXXXII Roman Numerals
      • CXXXIII Roman Numerals
      • CXXXIV Roman Numerals
      • CXXXV Roman Numerals
      • CXXXVI Roman Numerals
      • CXXXVII Roman Numerals
      • CXXXVIII Roman Numerals
      • CXXXIX Roman Numerals
      • CXL Roman Numerals
      • CXLI Roman Numerals
      • CXLII Roman Numerals
      • CXLIII Roman Numerals
      • CXLIV Roman Numerals
      • CXLV Roman Numerals
      • CXLVI Roman Numerals
      • CXLVII Roman Numerals
      • CXLVIII Roman Numerals
      • CXLIX Roman Numerals
      • CL Roman Numerals
      • CLI Roman Numerals
      • CLII Roman Numerals
      • CLIII Roman Numerals
      • CLIV Roman Numerals
      • CLV Roman Numerals
      • CLVI Roman Numerals
      • CLVII Roman Numerals
      • CLVIII Roman Numerals
      • CLIX Roman Numerals
      • CLX Roman Numerals
      • CLXI Roman Numerals
      • CLXII Roman Numerals
      • CLXIII Roman Numerals
      • CLXIV Roman Numerals
      • CLXV Roman Numerals
      • CLXVI Roman Numerals
      • CLXVII Roman Numerals
      • CLXVIII Roman Numerals
      • CLXIX Roman Numerals
      • CLXX Roman Numerals
      • CLXXI Roman Numerals
      • CLXXII Roman Numerals
      • CLXXIII Roman Numerals
      • CLXXIV Roman Numerals
      • CLXXV Roman Numerals
      • CLXXVI Roman Numerals
      • CLXXVII Roman Numerals
      • CLXXVIII Roman Numerals
      • CLXXIX Roman Numerals
      • CLXXX Roman Numerals
      • CLXXXI Roman Numerals
      • CLXXXII Roman Numerals
      • CLXXXIII Roman Numerals
      • CLXXXIV Roman Numerals
      • CLXXXV Roman Numerals
      • CLXXXVI Roman Numerals
      • CLXXXVII Roman Numerals
      • CLXXXVIII Roman Numerals
      • CLXXXIX Roman Numerals
      • CXC Roman Numerals
      • CXCI Roman Numerals
      • CXCII Roman Numerals
      • CXCIII Roman Numerals
      • CXCIV Roman Numerals
      • CXCV Roman Numerals
      • CXCVI Roman Numerals
      • CXCVII Roman Numerals
      • CXCVIII Roman Numerals
      • CXCIX in Roman Numerals
      • CC Roman Numerals
      • 3 in Roman Numerals
      • 4 in Roman Numerals
      • 5 in Roman Numerals
      • 6 in Roman Numerals
      • 7 in Roman Numerals
      • 8 in Roman Numerals
      • 9 in Roman Numerals
      • 10 in Roman Numerals
      • 11 in Roman Numerals
      • 12 in Roman Numerals
      • 13 in Roman Numerals
      • 14 in Roman Numerals
      • 15 in Roman Numerals
      • 16 in Roman Numerals
      • 18 in Roman Numerals
      • 19 in Roman Numerals
      • 20 in Roman Numerals
      • 22 in Roman Numerals
      • 30 in Roman Numerals
      • 50 in Roman Numerals
      • 100 in Roman Numerals
      • 500 in Roman Numerals
      • 1000 in Roman Numerals
      • SAMPLE >
        • TEMP XVII Roman Numerals
    • Percentage Increase Calculator
    • Linear Equations >
      • Two-Variable Linear Equations Test with Answers
      • One Variable Linear Equations >
        • Ax=B Linear Equation Calculator
        • Ax=B Linear Equation Practice Test
    • Decimal Places Value Chart
    • Cone Volume Calculator
    • Circumference Calculator
    • Rounding Calculator >
      • Round 15 to the nearest ten
      • Round 75 to the nearest ten
      • Round 35 to the nearest ten
      • Round 5 to the nearest ten
      • Round 3 to the Nearest Ten
    • Factor Calculator >
      • Factor of 36
      • Factor of 30
      • Factor of 32
      • Factor of 35
      • Factor of 39
      • Factor of 33
      • Factor of 34
      • Factor of 3
      • Factor of 3/4
      • Factor of 38
    • Radius of a Circle
    • Fraction Calculator
    • Perfect Square Calculator >
      • Is 1 a perfect square
      • Is 2 a perfect square
      • Is 8 a perfect square
      • Is 9 a perfect square
      • Is 16 a perfect square
      • Is 20 a perfect square
      • Is 36 a perfect square
      • Is 49 a perfect square
      • Is 81 a perfect square
      • Is 125 a perfect square
    • Random Number Generator >
      • Random and Pseudorandom Numbers
      • What is Random Number
    • Horizontal Line
    • X and Y Axis
    • Margin Calculator
    • Simple Interest Calculator
    • Sig Fig Calculator
    • Right Triangle Calculator
    • Money Counter
    • Root Calculator
    • Table of Square Roots
    • Square Root Calculator >
      • Square root of 2
      • Square root of 8
      • Square root of 5
      • Square root of 4
      • Square root of 3
      • Square root of 64
      • Square root of 10
      • Square root of 16
      • Square root of 25
      • Square root of 12
      • Square root of 50
      • Square root of 20
      • Square root of 9
      • Square root of 100
      • Square root of 36
      • Square root of 6
      • Square root of 49
      • Square root of 1
      • Square root of 32
      • Square root of 40
      • Square root of 81
      • Square root of 18
      • Square root of 72
      • Square root of 13
      • Square root of 80
      • Square root of 45
    • Log Calculator
    • Inequality Symbols
    • Exponent calculator
    • Decimal to Fraction Calculator
    • Fraction to Percent Calculator
    • Scale Factor
  • Unit Conversion
    • Celsius to Fahrenheit Converter >
      • -40 C to F
      • 10 C to F
      • 15 C to F
      • 22 C to F
      • 30 C to F
      • 37 C to F
      • 40 C to F
    • Fahrenheit to Celsius Converter >
      • -40 F to C
      • 17 Fahrenheit to Celsius
      • 18 Fahrenheit to Celsius
      • 19 Fahrenheit to Celsius
      • 20 Fahrenheit to Celsius
      • 23 Fahrenheit to Celsius
      • 26 Fahrenheit to Celsius
      • 27 Fahrenheit to Celsius
      • 28 Fahrenheit to Celsius
      • 37 Fahrenheit to Celsius
      • 40 F to C
      • 60 F to C
      • 68 F to C
      • 69 F to C
      • 70 F to C
      • 72 F to C
      • 75 F to C
      • 80 F to C
      • 90 F to C
      • 100 F to C
      • 180 F to C
      • 220 F to C
      • 350 F to C
    • Weight conversion table kg to lbs
    • Kilograms to Pounds Converter >
      • 1 kg to lbs
      • 2 kg to lbs
      • 3 kg to lbs
      • 4 kg to lbs
      • 6 kg to lbs
      • 8 kg to lbs
      • 10 kg to lbs
      • 12 kg to lbs
      • 15 kg to lbs
      • 16 kg to lbs
      • 20 kg to lbs
      • 23 kg to lbs
      • 25 kg to lbs
      • 30 kg to lbs
      • 40 kg to lbs
      • 45 kg to lbs
      • 50 kg to lbs
      • 53 kg to lbs
      • 56 kg to lbs
      • 57 kg to lbs
      • 58 kg to lbs
      • 59 kg to lbs
      • 60 kg to lb
      • 62 kg to lbs
      • 63 kg to lbs
      • 64 kg to lbs
      • 65 kg to lbs
      • 67 kg to lbs
      • 68 kg to lbs
      • 70 kg to lbs
      • 72 kg to lbs
      • 73 kg to lbs
      • 74 kg to lbs
      • 75 kg to lbs
      • 76 kg to lbs
      • 78 kg to lbs
      • 80 kg to lbs
      • 82 kg to lbs
      • 84 kg to lbs
      • 85 kg to lbs
      • 90 kg to lbs
      • 95 kg to lbs
      • 150 kg to lbs
      • 100 kg to lbs
    • Pounds to Kilograms Converter >
      • 1-10 LB to KG >
        • 1.25 lb to kg
        • 2.25 lb to kg
        • 3.75 lb to kg
        • 1.75 lb to kg
        • 1.56 lb to kg
        • 5.25 lb to kg
        • 2.75 lb to kg
        • 1.87 lb to kg
        • 1.65 lb to kg
        • 2.87 lb to kg
        • 0.75 lb to kg
        • 0.75 lb to kg
        • 1.1 lb to kg
        • 1.21 lb to kg
        • 1.32 lb to kg
        • 3.25 lb to kg
        • 1.55 lb to kg
        • 2.65 lb to kg
        • 1.37 lb to kg
        • 0.55 lb to kg
        • 1.85 lb to kg
        • 2.15 lb to kg
        • 1.14 lb to kg
        • 3.31 lb to kg
        • 0.88 lb to kg
        • 1.15 lb to kg
        • 5.29 lb to kg
        • 0.45 lb to kg
        • 4.75 lb to kg
        • 0.85 lb to kg
        • 0.95 lb to kg
        • 5.11 lb to kg
        • 0.44 lb to kg
        • 1.82 lb to kg
        • 2.85 lb to kg
        • 0.68 lb to kg
        • 1.13 lb to kg
        • 0.05 lb to kg
        • 2.47 lb to kg
        • 3.85 lb to kg
        • 4.23 lb to kg
        • 1.38 lb to kg
        • 2.91 lb to kg
        • 4.12 lb to kg
        • 2.95 lb to kg
        • 5.73 lb to kg
        • 2.99 lb to kg
        • 1.78 lb to kg
        • 3.35 lb to kg
        • 1.92 lb to kg
        • 1.58 lb to kg
        • 5.51 lb to kg
        • 1.28 lb to kg
        • 0.02 lb to kg
        • 1.42 lb to kg
        • 0.89 lb to kg
        • 1.16 lb to kg
        • 1.99 lb to kg
        • 1.69 lb to kg
        • 2.17 lb to kg
        • 1 lb to kg
        • 1.6 lb to kg
        • 2 lb to kg
        • 3 lb to kg
        • 4 lb to kg
        • 5 lb to kg
        • 6 lb to kg
        • 7 lb to kg
        • 8 lb to kg
        • 9 lb to kg
        • 10 lb to kg
      • 11 lb to kg
      • 12 lb to kg
      • 12.5 lb to kg
      • 13 lb to kg
      • 14 lb to kg
      • 15 lb to kg
      • 16 lb to kg
      • 17 lb to kg
      • 18 lb to kg
      • 19 lb to kg
      • 20 lb to kg
      • 21 lb to kg
      • 22 lb to kg
      • 23 lb to kg
      • 24 lb to kg
      • 25 lb to kg
      • 26 lb to kg
      • 27 lb to kg
      • 28 lb to kg
      • 29 lb to kg
      • 30 lb to kg
      • 31 lb to kg
      • 32 lb to kg
      • 33 lb to kg
      • 35 lb to kg
      • 40 lb to kg
      • 45 lb to kg
      • 50 lb to kg
      • 55 lb to kg
      • 60 lb to kg
      • 70 lb to kg
      • 90 lb to kg
      • 98 lb to kg
      • 99 lb to kg
      • 100 lb to kg
      • 130 lb to kg
      • 150 lb to kg
    • Fluid Ounces to Milliliters
    • Kilometers to Miles Converter >
      • 1 kilometer to miles
      • 5 km to miles
      • 10 km to miles
      • 15 km to miles
      • 20 km to miles
      • 50 km to miles
      • 100 km to miles
    • Miles to Kilometers Conversion >
      • 1 mile to kilometers
      • 5 miles to km
      • 10 miles to km
      • 15 miles to km
      • 20 miles to km
    • KPH to MPH Converter >
      • 30 kph to mph
      • 45 kph to mph
      • 60 kph to mph
      • 70 kph to mph
      • 75 kph to mph
      • 90 kph to mph
      • 100 kph to mph
      • 110 kph to mph
      • 120 kph to mph
      • 130 kph to mph
      • 140 kph to mph
      • 150 kph to mph
      • 155 kph to mph
      • 160 kph to mph
      • 165 kph to mph
      • 180 kph to mph
      • 200 kph to mph
      • 210 kph to mph
      • 220 kph to mph
      • 240 kph to mph
      • 250 kph to mph
      • 260 kph to mph
      • 270 kph to mph
      • 280 kph to mph
      • 300 kph to mph
      • 320 kph to mph
      • 360 kph to mph
      • 400 kph to mph
      • 600 kph to mph
      • 800 kph to mph
    • Inches to Millimeters Converter >
      • 1 inch to mm
      • 1.5 inches to mm
      • 2 inches to mm
      • 2.5 inches to mm
      • 3 inches to mm
      • 4 inches to mm
      • 5 inches to mm
      • 6 inches to mm
      • 18 inches to mm
      • 34 inches to mm
      • 160 inches to mm
    • Millimeters to Inches Converter >
      • 1 mm to inches
      • 1.5 mm to inches
      • 2 mm to inches
      • 2.5 mm to inches
      • 3 mm to inches
      • 3.5 mm to inches
      • 4 mm to inches
      • 4.5 mm to inches
      • 5 mm to inches
      • 6 mm to inches
      • 8 mm to inches
      • 10 mm to inches
    • Meters to Feet Converter >
      • 1 Meter to Feet
      • 2 Meters to Feet
      • 3 Meters to Feet
      • 5 Meters to Feet
      • 10 Meters to Feet
      • 20 Meters to Feet
      • 30 Meters to Feet
      • 50 Meters to Feet
      • 100 Meters to Feet
    • Centimeters to Inches Converter >
      • 2 cm to inches
      • 3 cm to inches
      • 5 cm to inches
      • 8 cm to inches
      • 10 cm to inches
      • 12 cm to inches
      • 14 cm to inches
      • 15 cm to inches
      • 17 cm to inches
      • 18 cm to inches
      • 20 cm to inches
      • 21 cm to inches
      • 25 cm to inches
      • 28 cm to inches
      • 30 cm to inches
      • 35 cm to inches
      • 40 cm to inches
      • 50 cm to inches
      • 60 cm to inches
      • 36 cm to inches
      • 45 cm to inches
      • 70 cm to inches
      • 80 cm to inches
      • 90 cm to inches
      • 100 cm to inches
      • 120 cm to inches
      • 150 cm to inches
    • Centimeters to Feet Converter >
      • 150 cm to feet
      • 160 cm to feet
      • 162 cm to feet
      • 163 cm to feet
      • 164 cm to feet
      • 165 cm to feet
      • 170 cm to feet
      • 172 cm to feet
      • 173 cm to feet
      • 175 cm to feet
      • 178 cm to feet
      • 180 cm to feet
      • 182 cm to feet
      • 183 cm to feet
      • 185 cm to feet
      • 190 cm to feet
    • Watts to Amps Calculator >
      • 500 Watts to Amps
      • 800 Watts to Amps
      • 1000 Watts to Amps
      • 1200 Watts to Amps
      • 1500 Watts to Amps
      • 2500 Watts to Amps
      • 3000 Watts to Amps
      • 5000 Watts to Amps
    • MCG to MG Converter >
      • 5 mcg to mg
      • 10 mcg to mg
      • 50 mcg to mg
      • 100 mcg to mg
      • 125 mcg to mg
      • 200 mcg to mg
      • 250 mcg to mg
      • 300 mcg to mg
      • 400 mcg to mg
      • 500 mcg to mg
      • 1000 mcg to mg
  • Date & Time
    • Time Duration Calculator
    • Time Conversion Chart
    • Military Times Chart
    • Military Time Now Clock
    • Military Time Converter
    • GMT Time Clock
    • Time Zone
    • Age Calculator
  • Test Prep
    • CFA Exam Overview >
      • How to Prepare for CFA level 1: An Actionable Study Guide
      • 20 CFA Level 1 Practice Questions
      • CFA Practice Questions for level 1
      • 30 CFA Level 1 Practice Questions
      • CFA Level 2 Practice Exam Questions
      • CFA Sample Practice Questions | Level 3| Answers and Explanations
      • CFA Exam Requirements
      • CFA Level 3 Salary
    • SAT Practice Test Math
    • Math Practice Test HiSET
    • Acing the SAT: A Comprehensive and Actionable Study Guide
    • GMAT Practice Questions Math with Answers and Explanations
    • GMAT Math Formulas Sheet
    • Math Practice Test for GED with Answers and Explanations
    • Math Problems to Solve | Practice Test
    • Free Practice TEAS Test
    • ​GRE Practice Math Questions | Free | Answers & Explanations
    • Formulas for GRE Math Section
    • ACT Practice Test with Answers and Explanations
    • CPA Practice Questions
    • ASVAB Practice Test
    • IQ Test
    • How many hours to study for CPA
    • How to Excel in Your CPA Exams: A Comprehensive Preparation Guide
  • Blog
  • Contact Us
    • Advertise Here
    • Privacy Policy
    • Useful Calculators and Converters
  • Español
    • XVIII Roman Numerals
    • XIX Roman Numerals
    • XX Roman Numerals
    • XXI Roman Numerals
    • XVIII Roman Numerals
    • XXII Roman Numerals
    • XXIII Roman Numerals
    • XXIV Roman Numerals
    • XXV Roman Numerals
    • XXVI Roman Numerals
    • XXVII Roman Numerals
    • XXVIII Roman Numerals
    • XXIX Roman Numerals
    • XXX Roman Numerals
    • XXXI Roman Numerals
    • XXXII Roman Numerals
    • XXXIII Roman Numerals
    • XXXIV Roman Numerals
    • XXXV Roman Numerals
    • XXXVI Roman Numerals
    • XXXVII Roman Numerals
    • XXXVIII Roman Numerals
    • XXXIX Roman Numerals
    • XL Roman Numerals
    • XLI Roman Numerals
    • XLII Roman Numerals
    • XLIII Roman Numerals
    • XLIV Roman Numerals
    • XLV Roman Numerals
    • XLVI Roman Numerals
    • XLVII Roman Numerals
    • XLVIII Roman Numerals
    • XLIX Roman Numerals
    • L Roman Numerals
    • LI Roman Numerals
    • LII Roman Numerals
    • LIII Roman Numerals
    • LIV Roman Numerals
    • LV Roman Numerals
    • LVI Roman Numerals
    • LVII Roman Numerals
    • LVIII Roman Numerals
    • LIX Roman Numerals
    • LX Roman Numerals
    • LXI Roman Numerals
    • LXII Roman Numerals
    • LXIII Roman Numerals
    • LXIV Roman Numerals
    • LXV Roman Numerals
    • XVIII Roman Numerals
    • TEMP XVII Roman Numerals
    • XVIII Roman Numerals >
      • TEMP XVII Roman Numerals
  • Mole Calculator
  • BMI Calculator
  • Tic Tac Toe
  • 100s Chart -Printable
  • Online Timer
  • Online Stopwatch
  • How Many Days Until Chritmas
  • ​Simple Interest Formula Explained
  • Understanding Simple Interest vs. Compound Interest
  • 10 Real-World Simple Interest Examples
  • 20 Simple Interest Problems
  • Compound Interest Practice Problems
  • 34 lb to kg
  • 36 lb to kg
  • 37 lb to kg
  • 38 lb to kg
  • 39 lb to kg
  • 41 lb to kg
  • 42 lb to kg
  • 43 lb to kg
  • 44 lb to kg
  • 46 lb to kg
  • 47 lb to kg
  • 48 lb to kg
  • 49 lb to kg
  • 51 lb to kg
  • 52 lb to kg
  • 53 lb to kg
  • 54 lb to kg
  • 56 lb to kg
  • 57 lb to kg
  • 58 lb to kg
  • 59 lb to kg
  • 61 lb to kg
  • 62 lb to kg
  • 63 lb to kg
  • 64 lb to kg
  • 65 lb to kg